李明衍放下竹简,陷入了沉思。作为现代人,他立即意识到了问题所在——这不是智慧的问题,而是计算能力的限制。在没有计算机的时代,要完成如此庞大的组合运算,几乎是不可能的任务。
但是...如果用现代的计算思维呢?
\"子芳兄,\"李明衍缓缓开口,\"我有一个想法。\"
\"哦?\"
\"这个问题的关键不在于穷举所有可能,而在于找到其中的规律。\"李明衍拿起算筹,开始在地上摆放,\"你看,如果我们把每一种组合看作一个点,把它们之间的影响关系看作连线...\"
他快速地摆出一个网状结构:\"这就形成了一个巨大的网络。而在这个网络中,一定存在某些关键节点,控制了整个系统的走向。\"
子芳眼前一亮:\"你是说,我们不需要计算所有的可能,只需要找出这些关键节点?\"
\"正是!\"李明衍开始在地上画图,\"我们可以设计一套...嗯,姑且称之为'算法'的东西。把复杂的问题分解成许多简单的步骤,然后让不同的人负责不同的部分。\"
他转向自己的团队:\"周文,你带几个墨家弟子负责天干部分的计算;庄贾,你负责地支;子彻,你负责八卦的排列组合...\"
\"等等,\"子芳打断道,\"这样分开计算,如何保证它们组合起来是正确的?\"
李明衍神秘一笑:\"这就需要用到一些特殊的方法了。\"
接下来的半个时辰里,李明衍向众人讲解了一套前所未闻的计算体系。他引入了\"变量\"、\"函数\"、\"迭代\"等概念,虽然用的是当时的语言,但思想却来自两千年后。
\"我们把每个天干地支和八卦都赋予一个数值,\"他在竹简上快速书写,\"甲为一,乙为二...乾为一,坤为八...这样,每一种组合都可以用数字来表示。\"
\"然后,我们设定一些运算规则...\"他开始写下一些奇怪的符号和公式,\"这些规则可以帮助我们快速判断某个组合是否可行。\"
在场的人都看得目瞪口呆。这种将复杂问题数字化、规则化的思维方式,完全超出了他们的认知。
\"最关键的是,\"李明衍画出一个金字塔形的结构,\"我们要建立一个'验证体系'。每一层的计算结果,都要经过下一层的验证。这样可以及时发现错误,避免谬误累积。\"
子芳看得如痴如醉:\"这...这种方法...闻所未闻!\"
\"因为这需要大量的人手配合,\"李明衍坦诚道,\"而且需要绝对的纪律和精确。每个人只负责自己的部分,不能出一点差错。\"
随后的半个月里,整个团队投入了前所未有的计算工作。李明衍设计了详细的分工:
第一组负责基础数据的整理,将所有的天干地支和八卦组合编号; 第二组负责初步筛选,用李明衍设计的\"快速判定法\"排除明显不可能的组合; 第三组负责深度计算,对筛选出的组合进行详细推演; 第四组负责验证,检查前面各组的计算结果...
整个过程就像一台精密的机器,每个人都是其中的一个零件。墨家弟子们虽然不完全理解李明衍的方法,但他们相信矩子,严格执行着自己的任务。
最让人惊讶的是李明衍设计的\"并行计算\"。他让多组人同时计算不同的部分,然后在特定的节点汇总结果。这种方法大大提高了效率,将原本需要数年的计算压缩到了半个月。
期间,李明衍还设计了各种巧妙的\"算法优化\"。比如,他发现某些组合具有对称性,只需要计算一半就能推导出另一半;又比如,他找出了一些\"不变量\",无论如何组合都保持恒定,可以作为检验的标准...
子芳全程旁观,越看越是震撼。他意识到,李明衍使用的不仅仅是一种计算方法,而是一种全新的思维方式——将复杂问题抽象化、模型化,然后用严密的逻辑去解决。
但他也敏锐地察觉到,这种方法的传承将极其困难。不是每个人都能理解这种抽象的思维,更不是每个时代都有足够的人手来执行如此精密的协作。
终于,在第十五天的深夜,彭越兴奋地跑来报告:\"先生,算出来了!第三组找到了一个完整的解!\"